Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Biol Pharm Bull ; 47(4): 872-877, 2024.
Article En | MEDLINE | ID: mdl-38658360

The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.


Analgesics, Opioid , Fentanyl , Animals , Fentanyl/pharmacology , Fentanyl/analogs & derivatives , Male , Mice , Analgesics, Opioid/pharmacology , Glutamic Acid/metabolism , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Pain Measurement/drug effects , Pain Measurement/methods , Morphine/pharmacology
2.
Nutr Cancer ; 75(3): 1005-1013, 2023.
Article En | MEDLINE | ID: mdl-36714982

Caffeine is a widely consumed stimulant, known for its positive effects on physical and mental performance. These effects are potentially beneficial for ameliorating cancer-related fatigue, which affects the quality of life of patients with cancer. This study aimed to determine the anti-fatigue and antitumor effects of caffeine in tumor-bearing mice. BALB/c mice were intravenously injected with C26 colon carcinoma cells and fed with normal or 0.05% caffeine-supplemented diet. Fatigue-like behavior was assessed by running performance using a treadmill test. Lung, blood, liver, muscle, and epididymal adipose tissue samples were collected on day 13 and examined. The antitumor effect of caffeine was assessed using subcutaneous tumor-bearing mice fed with 0.05% caffeine-supplemented diet, and the tumor volume was measured. C26 tumor-bearing mice showed fatigue-like behavior associated with hypoglycemia, depleted liver glycogen and non-esterified fatty acid (NEFA) levels. C26 tumor-bearing mice fed with 0.05% caffeine-supplemented diet showed improved running performance associated with restored NEFA levels. However, exacerbated hypoglycemia and liver glycogen levels after caffeine consumption may be due to tumor-induced catabolic signals, as the tumor volume was not affected. Collectively, caffeine may exert anti-fatigue effects through enhanced lipolysis leading to restored NEFA levels, which can be used as an alternative energy source.


Colonic Neoplasms , Hypoglycemia , Mice , Animals , Caffeine/pharmacology , Liver Glycogen , Fatty Acids, Nonesterified , Quality of Life , Diet , Colonic Neoplasms/pathology , Hypoglycemia/complications
3.
Front Behav Neurosci ; 11: 75, 2017.
Article En | MEDLINE | ID: mdl-28515684

Parkinson's disease (PD), a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B) inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO) mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1-10 mg/kg) dose-dependently reduced immobility time in the forced swimming test (FST) in CD157 KO mice, but not C57BL/6N wild-type (WT) mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA) D2/D3 receptor agonist) or rasagiline (another MAO-B inhibitor), and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA), mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT) content, cortical norepinephrine (NE) content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT), repeated administration of mirtazapine had anxiolytic effects, and selegiline nonsignificantly ameliorated anxiety-like behaviors in CD157 KO mice. In the social interaction and preference tests, repeated mirtazapine ameliorated the high anxiety and low sociability of CD157 KO mice, whereas selegiline did not. These results indicate that selegiline has antidepressant and mild anxiolytic effects in CD157 KO mice, and suggest that it is an effective antiparkinsonian drug for depressive and anxiety symptoms in PD patients with a CD157 single nucleotide polymorphism (SNP).

4.
BMC Neurosci ; 18(1): 35, 2017 03 24.
Article En | MEDLINE | ID: mdl-28340569

BACKGROUND: Recent rodent and human studies provide evidence in support of the fact that CD157, well known as bone marrow stromal cell antigen-1 (BST-1) and a risk factor in Parkinson's disease, also meaningfully acts in the brain as a neuroregulator and affects social behaviors. It has been shown that social behaviors are impaired in CD157 knockout mice without severe motor dysfunction and that CD157/BST1 gene single nucleotide polymorphisms are associated with autism spectrum disorder in humans. However, it is still necessary to determine how this molecule contributes to the brain's physiological and pathophysiological functions. METHODS: To gain fresh insights about the relationship between the presence of CD157 in the brain and its enzymatic activity, and aberrant social behavior, CD157 knockout mice of various ages were tested. RESULTS: CD157 immunoreactivity colocalized with nestin-positive cells and elements in the ventricular zones in E17 embryos. Brain CD157 mRNA levels were high in neonates but low in adults. Weak but distinct immunoreactivity was detected in several areas in the adult brain, including the amygdala. CD157 has little or no base exchange activity, but some ADP-ribosyl cyclase activity, indicating that CD157 formed cyclic ADP-ribose but much less nicotinic acid adenine dinucleotide phosphate, with both mobilizing Ca2+ from intracellular Ca2+ pools. Social avoidance in CD157 knockout mice was rescued by a single intraperitoneal injection of oxytocin. CONCLUSIONS: CD157 may play a role in the embryonic and adult nervous systems. The functional features of CD157 can be explained in part through the production of cyclic ADP-ribose rather than nicotinic acid adenine dinucleotide phosphate. Further experiments are required to elucidate how the embryonic expression of CD157 in neural stem cells contributes to behaviors in adults or to psychiatric symptoms.


ADP-ribosyl Cyclase/metabolism , Antigens, CD/metabolism , Brain/enzymology , Social Behavior , ADP-ribosyl Cyclase/genetics , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Animals, Newborn , Antigens, CD/genetics , Avoidance Learning/physiology , Brain/embryology , Brain/growth & development , Cyclic ADP-Ribose/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Models, Animal , NADP/analogs & derivatives , NADP/metabolism , Nestin/metabolism , RNA, Messenger/metabolism
...